by Himanshu Damle During his attempt to axiomatize the category of all categories, Lawvere says: Our intuition tells us that whenever two categories exist in our world, then so does the corresponding category of all natural transformations between the functors from the first category to the second (The Category of Categories as a Foundation). However, if one tries to reduce categorial constructions to set theory, one faces some serious problems in the case of a category of functors. Lawvere (who, according to his aim of axiomatization, is not concerned by such a reduction) relies here on “intuition” to stress that those working with categorial concepts despite these problems have the feeling that the envisaged construction is clear, meaningful and legitimate. Not the reducibility to set theory, but an “intuition” to be specified answers for clarity, meaningfulness and legitimacy of a construction emerging in a mathematical working situation. In particular, Lawvere relies on a collective intuition, a common sense – for he explicitly says “our intuition”. Further, one obviously has to deal here with common sense on a technical level, for the “we” can only extend to a community used to the work with the concepts concerned. In the tradition of philosophy, “intuition” means immediate, i.e., not conceptually mediated cognition. The use of the term in the context of validity (immediate insight in the truth of a proposition) is to be thoroughly distinguished from its use in the sensual context (the German Anschauung). Now, language is a manner of representation, too, but contrary to language, in the context of images the concept of validity is meaningless. Obviously, the aspect of cognition guiding is touched on here. Especially the sensual intuition can take the guiding (or heuristic) function. There have been many working situations in history of mathematics in which making the objects of investigation accessible to a sensual intuition (by providing a Veranschaulichung) yielded considerable progress in the development of the knowledge concerning these objects. As an example, take the following account by Emil Artin of Emmy Noether’s contribution to the theory of algebras: Emmy Noether introduced the concept of representation space – a vector space upon which the elements of the algebra operate as linear transformations, the composition of the linear transformation reflecting the multiplication in the algebra. By doing so she enables us to use our geometric intuition. Similarly, Fréchet thinks to have really “powered” research in the theory of functions and functionals by the introduction of a “geometrical” terminology: One can [ …] consider the numbers of the sequence [of coefficients of a Taylor series] as coordinates of a point in a space [ …] of infinitely many dimensions. There are several advantages to proceeding thus, for instance the advantage which is always present when geometrical language is employed, since this language is so appropriate to intuition due to the analogies it gives birth to. Mathematical terminology often stems from a current language usage whose (intuitive, sensual) connotation is welcomed and serves to give the user an “intuition” of what is intended. While Category Theory is often classified as a highly abstract matter quite remote from intuition, in reality it yields, together with its applications, a multitude of examples for the role of current language in mathematical conceptualization. This notwithstanding, there is naturally also a tendency in contemporary mathematics to eliminate as much as possible commitments to (sensual) intuition in the erection of a theory. It seems that algebraic geometry fulfills only in the language of schemes that essential requirement of all contemporary mathematics: to state its definitions and theorems in their natural abstract and formal setting in which they can be considered independent of geometric intuition (Mumford D., Fogarty J. Geometric Invariant Theory). In the pragmatist approach, intuition is seen as a relation. This means: one uses a piece of language in an intuitive manner (or not); intuitive use depends on the situation of utterance, and it can be learned and transformed. The reason for this relational point of view, consists in the pragmatist conviction that each cognition of an object depends on the means of cognition employed – this means that for pragmatism there is no intuitive (in the sense of “immediate”) cognition; the term “intuitive” has to be given a new meaning. What does it mean to use something intuitively? Heinzmann makes the following proposal: one uses language intuitively if one does not even have the idea to question validity. Hence, the term intuition in the Heinzmannian reading of pragmatism takes a different meaning, no longer signifies an immediate grasp. However, it is yet to be explained what it means for objects in general (and not only for propositions) to “question the validity of a use”. One uses an object intuitively, if one is not concerned with how the rules of constitution of the object have been arrived at, if one does not focus the materialization of these rules but only the benefits of an application of the object in the present context. “In principle”, the cognition of an object is determined by another cognition, and this determination finds its expression in the “rules of constitution”; one uses it intuitively (one does not bother about the being determined of its cognition), if one does not question the rules of constitution (does not focus the cognition which determines it). This is precisely what one does when using an object as a tool – because in doing so, one does not (yet) ask which cognition determines the object. When something is used as a tool, this constitutes an intuitive use, whereas the use of something as an object does not (this defines tool and object). Here, each concept in principle can play both roles; among two concepts, one may happen to be used intuitively before and the other after the progress of insight. Note that with respect to a given cognition, Peirce when saying “the cognition which determines it” always thinks of a previous cognition because he thinks of a determination of a cognition in our thought by previous thoughts. In conceptual history of mathematics, however, one most often introduced an object first as a tool and only after having done so did it come to one’s mind to ask for “the cognition which determines the cognition of this object” (that means, to ask how the use of this object can be legitimized). The idea that it could depend on the situation whether validity is questioned or not has formerly been overlooked, perhaps because one always looked for a reductionist epistemology where the capacity called intuition is used exclusively at the last level of regression; in a pragmatist epistemology, to the contrary, intuition is used at every level in form of the not thematized tools. In classical systems, intuition was not simply conceived as a capacity; it was actually conceived as a capacity common to all human beings. “But the power of intuitively distinguishing intuitions from other cognitions has not prevented men from disputing very warmly as to which cognitions are intuitive”. Moreover, Peirce criticises strongly cartesian individualism (which has it that the individual has the capacity to find the truth). We could sum up this philosophy thus: we cannot reach definite truth, only provisional; significant progress is not made individually but only collectively; one cannot pretend that the history of thought did not take place and start from scratch, but every cognition is determined by a previous cognition (maybe by other individuals); one cannot uncover the ultimate foundation of our cognitions; rather, the fact that we sometimes reach a new level of insight, “deeper” than those thought of as fundamental before, merely indicates that there is no “deepest” level. The feeling that something is “intuitive” indicates a prejudice which can be philosophically criticised (even if this does not occur to us at the beginning). In our approach, intuitive use is collectively determined: it depends on the particular usage of the community of users whether validity criteria are or are not questioned in a given situation of language use. However, it is acknowledged that for example scientific communities develop usages making them communities of language users on their own. Hence, situations of language use are not only partitioned into those where it comes to the users’ mind to question validity criteria and those where it does not, but moreover this partition is specific to a particular community (actually, the community of language users is established partly through a peculiar partition; this is a definition of the term “community of language users”). The existence of different communities with different common senses can lead to the following situation: something is used intuitively by one group, not intuitively by another. In this case, discussions inside the discipline occur; one has to cope with competing common senses (which are therefore not really “common”). This constitutes a task for the historian. The article is taken from:
0 Comments
Leave a Reply. |
Steven Craig Hickman - The Intelligence of Capital: The Collapse of Politics in Contemporary Society
Steven Craig Hickman - Hyperstition: Technorevisionism – Influencing, Modifying and Updating Reality
Archives
April 2020
|