OnScenes
  • OnScenes
  • News
  • Art
    • Music >
      • Album Review
    • Poetry
    • Film >
      • Filmmakers >
        • Movies
    • Theater >
      • TheaterMakers
  • Philosophy
  • PhiloFiction
  • Science&Technology
  • Economy
  • Media
    • Video
    • Audio
  • About
  • Contact
    • Location

DEEP LEARNING LIBRARY

5/29/2018

0 Comments

 
Picture
FREE ONLINE BOOKS
​
1. Deep Learning by Yoshua Bengio, Ian Goodfellow and Aaron Courville
2. Neural Networks and Deep Learning by Michael Nielsen
3. Deep Learning by Microsoft Research
​4. Deep Learning Tutorial by LISA lab, University of Montreal 
COURSES
​
1. Machine Learning by Andrew Ng in Coursera
2. Neural Networks for Machine Learning by Geoffrey Hinton in Coursera
3. Neural networks class by Hugo Larochelle from Université de Sherbrooke
4. Deep Learning Course by CILVR lab @ NYU
5. CS231n: Convolutional Neural Networks for Visual Recognition On-Going
6. Probabilistic Graphical Model by Daphne Koller in Coursera
​7. Kevin Duh Class for Deep Net Deep Learning and Neural Network
VIDEO AND LECTURES

1. How To Create A Mind By Ray Kurzweil - Is a inspiring talk
2. Deep Learning, Self-Taught Learning and Unsupervised Feature Learning By Andrew Ng
3. Recent Developments in Deep Learning By Geoff Hinton
4. The Unreasonable Effectiveness of Deep Learning by Yann LeCun
5. Deep Learning of Representations by Yoshua bengio
6. Principles of Hierarchical Temporal Memory by Jeff Hawkins
7. Machine Learning Discussion Group - Deep Learning w/ Stanford AI Lab by Adam Coates
8. Making Sense of the World with Deep Learning By Adam Coates
​9. Demystifying Unsupervised Feature Learning By Adam Coates
​10.Visual Perception with Deep Learning by Yann LeCun
PAPERS
​
1. ImageNet Classification with Deep Convolutional Neural Networks
2. Using Very Deep Autoencoders for Content Based Image Retrieval
3. Learning Deep Architectures for AI
4. CMU’s list of papers
TUTORIALS

1. UFLDL Tutorial 1
2. UFLDL Tutorial 2
3. Deep Learning for NLP (without Magic)
​4. A Deep Learning Tutorial: From Perceptrons to Deep Networks
WEBSITES

1. deeplearning.net
2. deeplearning.stanford.edu
​3. deeplearning.cs.toronto.edu
DATASETS

1. MNIST Handwritten digits
2. Google House Numbers from street view
3. CIFAR-10 and CIFAR-100
4. IMAGENET
5. Tiny Images 80 Million tiny images
6. Flickr Data 100 Million Yahoo dataset
​7. Berkeley Segmentation Dataset 500 
FRAMEWORKS

1. Caffe
2. Torch7
3. Theano
​4. cuda-convn
5. Ccv
6. NuPIC
​7. DeepLearning4J
MISCELLANEOUS

1. Google Plus - Deep Learning Community
2. Caffe Webinar
3. 100 Best Github Resources in Github for DL
4. Word2Vec
5. Caffe DockerFile
6. TorontoDeepLEarning convnet
7. Vision data sets
8. Fantastic Torch Tutorial My personal favourite. Also check out gfx.js
9. Torch7 Cheat sheet
OTHER LINK
1. https://ift6266h13.wordpress.com/home/resources/
2. http://www.dmi.usherb.ca/~larocheh/projects_classrbm.html
3. http://www.slideshare.net/hammawan/deep-neural-networks
4. http://www.iro.umontreal.ca/~bengioy/talks/mlss-austin.pdf
5. http://techtalks.tv/talks/lab/59461/
6.https://www.evernote.com/shard/s433/sh/52b77d5f-a2cf-46f5
9b4c68620f1682be/73527274007c5fa123cd6cc0d8bb10df
7. http://cl.naist.jp/~kevinduh/a/deep2014/140116-ResearchSeminar.pdf
taken from:
lookaside.fbsbx.com
0 Comments



Leave a Reply.

    Science&Technology

    All

    Archives

    March 2020
    February 2020
    October 2019
    September 2019
    March 2019
    February 2019
    January 2019
    August 2018
    May 2018
    January 2018
    December 2017
    November 2017
    October 2017

    RSS Feed

    Alexander Galloway - ARE ALGORITHMS BIASED?
    Alexander Galloway -A LIST OF QUALITIES
    Achim Szepanski - CELLULAR AUTOMATA AND MACHINE 4.0
    Achim Szepanski - DELEUZE/GUATTARIS DIAGRAM
    Achim Szepanski - GILBERT SIMONDON, HIGH FREQUENCY TRADING AND ECOTECHNOLOGY
    Achim Szepanski - PARANOIA MACHINES OF THE STATE
    David Beyer - The Future of Machine Intelligence
    David Roden - New Substantivism in Philosophy of Technology
    DEEP LEARNING LIBRARY
    Geoff Manaugh - The Ghost of Cognition Past, or Thinking Like An Algorithm
    Himanshu Damle - Acceleration in String Theory–Savdeep Sethi
    Himanshu Damle - Black Holes
    Himanshu Damle - Nomological Unification and Phenomenology of Gravitation
    Himanshu Damle - Superstrings as Grand Unifier
    Himanshu Damle - The Coming Swarm DDoS Actions, Hacktivism, and Civil Disobedience on the Internet
    Himanshu Damle - The Illicit Trade of Firearms, Explosives and Ammunition on the Dark Web
    Max Haiven - THE POLITICS OF AI-DRIVEN FINANCIALIZATION (INTERVIEW WITH MAX HAIVEN)
    McKenzie Wark - Blog-Post for Cyborgs
    Paul HANDLEY - Data swamped US spy agencies put hopes on artificial intelligence
    open culture - George Orwell Predicted Cameras Would Watch Us in Our Homes; He Never Imagined We’d Gladly Buy and Install Them Ourselves
    Open Culture - This Is Your Brain on Exercise
    Rouvroy/Stiegler - THE DIGITAL REGIME OF TRUTH: FROM THE ALGORITHMIC GOVERNMENTALITY TO A NEW RULE OF LAW
    Steven Craig Hickman - The Cosmology of Nick Land: Bataille, Gnosticism, and Contemporary Physics
    Steven Craig Hickman - Fear of Technology: Being Alone Together in the Machine
    Steven Craig Hickman - Philip K. Dick, William Gibson and Science Experiments: Information from the Future
    The Climate changes in the time of Haarp weather systems
Powered by Create your own unique website with customizable templates.
  • OnScenes
  • News
  • Art
    • Music >
      • Album Review
    • Poetry
    • Film >
      • Filmmakers >
        • Movies
    • Theater >
      • TheaterMakers
  • Philosophy
  • PhiloFiction
  • Science&Technology
  • Economy
  • Media
    • Video
    • Audio
  • About
  • Contact
    • Location